

Sion (East), Mumbai – 400022. (Autonomous)

> Faculty: Science Program: M.Sc.

Subject: DATA SCIENCE

PART I PROPOSED SYLLABUS

Academic Year: 2020 – 2021

M.Sc(Data Science) – Part I

	SEMESTER – I		SEMESTER – II		
Subject Code	Subject Name	Credits	Subject Code	Subject Name	Credits
SIPSDS11	Statistical Methods and Linear Programming	4	SIPSDS21	Advanced Statistical Methods	4
SIPSDS12	Advanced Database Management Systems	4	SIPSDS22	Machine Learning	4
SIPSDS13	Data Mining for Business Intelligence	4	SIPSDS23	Linear Algebra	4
SIPSDS14	Data Science -I	4	SIPSDS24	Research Methodology	4
SIPSDSP11	Statistical Methods and Linear Programming Practical	2	SIPSDSP21	Advanced Statistical Methods practical	2
SIPSDSP12	Advanced Database Management Systems Practical	2	SIPSDSP22	Machine Learning practical	2
SIPSDSP13	Data Mining for Business Intelligence practical	2	SIPSDSP23	Linear Algebra practical	2
SIPSDSP14	Data Science -I practical	2	SIPSDSP24	Research Methodology Practical	2
Total Credits		24	Total Cred	lits	24

SEMESTER – I

Statistical Methods and Linear Programming

Learning Objective:

The purpose of this course is to familiarize students with basics of Statistics which is essential for prospective researchers and professionals.

Learning Outcomes:

- Enable learners to know descriptive statistical concepts
- Enable learners to apply the various distribution methods to data.
- Demonstrate the competency on topics like basics of data science, data transformation, statistical methods, applied probability etc.
- Enable learners to know various statistical models concepts used for the study of Data Science.

M. Sc (Data Science)	Semester – I – SIPSDS11
Course Name	Statistical Methods and Linear Programming
Periods per week (1 Period is 60 minutes)	4
Credits (Theory + Internals)	4

Unit	Contents	No. of
Omt		Lectures
I	 Data Presentation :Data types : attribute, variable, discrete and continuous variable Data presentation : frequency distribution, histogram, ogive curves, stem and leaf display Data Aggregation : Measures of Central tendency: Mean, Median, mode for raw data, discrete, grouped frequency distribution. Measures dispersion: Variance, standard deviation, coefficient of variation for raw data, discrete and grouped frequency distribution, quartiles, quantiles Real life examples Moments: raw moments, central moments, relation between raw and central moments Measures of Skewness and Kurtosis: based on moments, quartiles, relation between mean, median, mode for symmetric, asymmetric frequency curve. 	12
Π	Linear Regression : fitting of linear regression using least square regression, coefficient of determination, properties of regression coefficients (only statement) Simple Linear Regression, Multiple Linear Regression, Classification: logistic regression, Linear discriminant analysis, Quadratic discriminant analysis Resampling Methods : Bootstrapping, cross validation, Subset Selection: forward, backward, stepwise, best	12

ш	 Correlation and Regression: bivariate data, scatter plot, correlation, nonsense correlation, Karl pearson's coefficients of correlation, independence. Shrinkage: Ridge regression Dimension Reduction: principal components regression, partial least squares. Nonlinear Models: step function, piecewise function, splines, generalized additive mode, Tree-Based Methods: Bagging, Boosting, random forest. 	12		
IV	V Introduction: linear programming, graphical method, simplex method, slack, surplus, artificial variables, Big M method, two Phase Method, conversion from simplex to dual and vice versa, dual simplex method, integer programming problem.			
V	 Transportation problem: North west corner method, Least cost entry method, Vogel's approximation method, test for optimality. Assignment Problem: mathematical models of assignment problem, Hungarian Method. Job sequencing Problem, Programme Evaluation and Review Technique and Critical Path Method (PERT AND CPM). 	12		

Sr.	Title	Author/s	Publisher	Edition	Year
No.					
1	Probability, Statistics, Design of Experiments and Queuing theory, with applications of Computer Science	Trivedi, K.S.	Prentice Hall of India, New Delhi	2 nd	2009
2	Fundamentals of Mathematical Statistics	Gupta, S.C. and Kapoor, V.K.	S. Chand and Sons, New Delhi	11 th	2002
3	Applied Statistics	Gupta, S.C. and Kapoor, V.K	S. Chand and Sons, New Delhi	7 th	1999
4	A First course in probability	Ross, S.M	Pearson	6 th	2006

Additional References :

- 1. "Probability and Statistics for Engineers", Dr. J. Ravichandran, 2010.
- 2. "Practical Statistics for Data Science", Peter Bruce, Andrew Bruce, O'Reilly, 2017.
- 3. "Statistics for Data Science", James D. Miller, Packt, 2017.
- 4. "Data Analysis with R", Tony Fischetti, 2015.
- 5. "R for data Science: Import, Tidy, Transform, Visualize and Model Data", Hadley Wickham, Garrett Grolemund.

Advanced Database Management Systems

Learning Objective: To introduce students to the Extended Entity Relationship Model and Object Model, Object-Oriented Databases, Parallel and Distributed Databases and Client-Server Architecture and Databases on the Web and Semi Structured Data

Learning Outcome: Students will understand how to implement the Horizontal fragmentation of databases, Vertical fragmentation of database, Creating Replica of database., Create Temporal Database, Inserting and retrieving multimedia objects in database (Image / Audio /Video) and Implement Active database using Triggers.

M. Sc (Data Science)	Semester – I – SIPSDS12
Course Name	Advanced Database Management Systems
Periods per week (1 Period is 60 minutes)	4
Credits (Theory + Internals)	4

Unit	Contents	No. of Lectures
I	The Extended Entity Relationship Model and Object Model: The ER model revisited, Motivation for complex data types, User defined abstract data types and structured types, Subclasses, Super classes, Inheritance, Specialization and Generalization, Constraints and characteristics of specialization and Generalization, Relationship types of degree higher than two.	12
Π	Object-Oriented Databases: Overview of Object-Oriented concepts, Object identity, Object structure, and type constructors, Encapsulation of operations, Methods, and Persistence, Type hierarchies and Inheritance, Type extents and queries, Complex objects; Database schema design for OODBMS; OQL, Persistent programming languages, OODBMS architecture and storage issues, Transactions and Concurrency control, Example of ODBMS Object Relational and Extended Relational Databases: Database design for an ORDBMS - Nested relations and collections, Storage and access methods, Query processing and Optimization, An overview of SQL3, Implementation issues for extended type, Systems comparison of RDBMS, OODBMS, ORDBMS	12
III	Parallel and Distributed Databases and Client-Server Architecture: Architectures for parallel databases, Parallel query evaluation, Parallelizing individual operations, Sorting, Joins, Distributed database concepts, Data fragmentation, Replication, and allocation techniques for distributed database design, Query processing in distributed databases, Concurrency	12

	control and Recovery in distributed databases. An overview of Client-	
	Server architecture	
	Databases on the Web and Semi Structured Data: Web interfaces to the	
	Web, Overview of XML, Structure of XML data, Document schema,	
	Querying XML data, Storage of XML data, XML applications, The semi	
IV	structured data model, Implementation issues, Indexes for text data	12
1 V	Enhanced Data Models for Advanced Applications: Active database	14
	Concepts. Temporal database Concepts, Spatial databases Concepts,	
	Deductive databases and Query processing, Mobile databases, Geographic	
	information systems.	
	Introduction and Getting Started : Documents, Collections : Dynamic	
	Schemas, Naming, Databases, Getting and Starting MongoDB, Introduction	
	to the MongoDB Shell : Running the Shell, A MongoDB Client, Basic	
	Operations with the Shell, Data Types : Basic Data Types, Dates, Arrays,	
	Embedded Documents, _id and ObjectIds	
	Creating, Updating, and Deleting Documents : Inserting and Saving	
	Documents : Batch Insert, Insert Validation, Removing Documents :	
	Remove Speed, Updating Documents : Document Replacement, Using	
V	Modifiers, Upserts, Updating Multiple Documents, Returning Updated	12
	Documents	
	Querying : Introduction to find : Specifying Which Keys to Return,	
	Limitations, Query Criteria : Query Conditionals, OR Queries, \$not,	
	Conditional Semantics, Type-Specific Queries : null, Regular	
	Expressions, Querying Arrays, Querying on Embedded Documents,	
	\$where Queries : Server-Side Scripting, Cursors : Limits, Skips, and Sorts,	
	Avoiding Large Skips, Advanced Query Options, Getting Consistent	
	Results, Immortal Cursors, Database Commands : How Commands Work	

Sr. No.	Title	Author/s	Publisher	Edition	Year
1	Fundamentals of Database Systems	Elmasri and Navathe,	Pearson Education	4 th	2003
2	Database Management Systems	Raghu Ramakrishnan, Johannes Gehrke	McGraw- Hill	2 nd	2002
3	Database System Concepts	Korth, Silberchatz, Sudarshan	McGraw- Hill	7 th	2019
4	Database Systems, Design, Implementation and Management	Peter Rob and Coronel	Thomson Learning	9 th	2010
5	MongoDB: The Definitive Guide	Kristina Chodorow	O'Reilly Media	2 nd	2013

Data Mining for Business Intelligence

Learning Objective:

As Business Intelligence is a technology driven process, students will be exposed to various activities like Online Analytical Processing, Data Mining, Querying and Reporting which is prime requisite in business world.

Learning Outcome:

The student becomes an expert to do analysis of complex data. The Business Intelligence concepts helps in accelerating and improving decision making.

M. Sc (Data Science)	Semester – I – SIPSDS13	
Course Name	Data Mining for Business Intelligence	
Periods per week (1 Period is 60 minutes)	4	
Credits (Theory + Internals)	4	

Unit	Contents	No. of Lectures
Ι	Introduction: What is Data mining?, Why Data Mining?Major Issues in Data Mining Data Objects and Attribute Types, Basic Statistical Descriptions of Data, Data Visualization	12
п	Data Preprocessing: Data Cleaning, Data Integration, Data Reduction, Data transformation and discretization Data Warehousing and Online Analytical Processing: Data Warehouse Modeling, Data warehouse Design and Usage, Implementation	12
III	Data Cube Technology : Concepts, Methods, Multidimensional Data Analysis Mining frequent Patterns, Associations and correlations: Basic Concepts and Methods	12
IV	Advanced Pattern Mining, Classification: Basic Concepts, Advanced Methods Cluster Analysis : Basic Concepts and Methods, Advanced Cluster analysis	12
V	Outlier Detection, Data Mining Trends, Mining Complex data types, Data Mining Applications	12

Sr. No.	Title	Author/s	Publisher	Edition	Year
1	Data Mining:Concepts and Techniques	Jiawei Han, Micheline Kamber, Jian Pei	Morgan Kaufmann	Third	2012
2	Data Mining for Business Intelligence: Concepts, Techniques and Applications	Galit Shmueli,Nitin Patel,Peter Bruce	Wiley	Second	2010
3	Mining of Massive Datasets	Jure Leskovec , Anand Rajaraman, Jeffrey D. Ullman			2014

Data Science - I

Learning Objective:

To acquaint learners about the fact that Data is Science in today's world.

Learning Outcome:

Students will be able to develop models using given data, and use that model to analyze data, predict data with accuracy check which is the key factor when analyzing data.

M. Sc (Data Science)	Semester – I – SIPSDS14
Course Name	Data Science - I
Periods per week (1 Period is 60 minutes)	4
Credits(Theory + Internals)	4

Unit	Contents	No. of
Omt	Contents	
I	Getting Started with R : Installation, Getting started with the R interface R Nuts and Bolts : Entering Input, Evaluation, R Objects, Numbers, Attributes , Creating Vectors, Mixing Objects, Explicit Coercion, Matrices, Lists, Factors, Missing Values, Data Frames , Names Getting Data In and Out of R : Reading and Writing Data, Reading Data Fileswith read.table(), Reading in Larger Datasetswith read.table, Calculating Memory Requirements for R Objects Using the readr Package Using Textual and Binary Formats for Storing Data : Using dput() and dump()	12
п	 Interfaces to the Outside World : File Connections, Reading Lines of a Text File, Reading From a URL Connection Subsetting R Objects : Subsetting a Vector, Subsetting a Matrix, Subsetting Lists, Subsetting Nested Elements of a List, Extracting Multiple Elements of a List, Partial Matching, Removing NA Values Vectorized Operations, : Vectorized Matrix Operations Dates and Times : Dates in R, Times in R, Operations on Dates and Times 	12
ш	Managing Data Frames with the dplyr package : Data Frames, The dplyr Package, dplyr Grammar, Installing the dplyr package, select(), filter(), arrange(), rename(), mutate(), group_by(), %>% Control Structures : if-else, for Loops, Nested for loops, while Loops, repeat Loops, next, break Functions : Functions in R, Your First Function, Argument Matching, Lazy	12

	Evaluation, The Argument, Arguments Coming After the				
	Argument				
	Scoping Rules of R : A Diversion on Binding Values to Symbol, Scoping				
	Rules, Lexical Scoping: Why Does It Matter?, Lexical vs. Dynamic Scoping,				
	Application: Optimization, Plotting the Likelihood				
	Coding Standardsfor R : Loop Functions, Looping on the Command Line,				
	lapply(), sapply(), split(), Splitting a Data Frame, tapply, apply(),				
TX 7	Col/Row Sums and Means, Other Ways to Apply, mapply(), Vectorizing a	10			
IV	Function	12			
	Debugging : Something's Wrong!, Figuring Out What's Wrong, Debugging				
	Tools in R, Using traceback(), Using debug(), Using recover()				
	Profiling R Code : Using system.time(), Timing Longer Expressions, The R				
	Profiler, Using summaryRprof()				
N7	Simulation : Generating Random Numbers, Setting the random number	10			
v	seed, Simulating a Linear Model, Random Sampling	12			
	Data Analysis Case Study : Changes in Fine Particle Air Pollution in the U.S.				
	: Synopsis, Loading and Processing the Raw Data, Results				

Sr. No.	Title	Author/s	Publisher	Edition	Year
1	R Programming for Data Science	Roger D Peng		1 st	2015
2	Data Science from Scratch	Joel Grus	O'Reilly Media, Inc.	2 nd	2019
3	An Introduction to Statistical Learning	Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani	Springer Science & Business Media, 2013	illustrated	2013
4	Practical Statistics for Data Scientists	Peter Bruce, Andrew Bruce	O'Reilly Media, Inc.	3 rd	2018

Practical Component: (SEMESTER I)

M. Sc (Data Science)	Semester – I – SIPSDSP11
Course Name	Statistical Methods and Linear Programming
Periods per week (1 Period is 60 minutes)	4
Credits	2

List of Practical: (Implement using R/Python programming language)

1	Linear Regression
2	Regression and prediction.
3	Classification
4	Resampling
5	Subset Selection
6	Shrinkage
7	Reduction
8	Nonlinear Models
9	Tree-Based Methods
10	Linear programming problem.
11	Transportation problem.
12	Assignment problem.
13	PERT/CPM problem.

M. Sc (Data Science)	Semester – I – SIPSDSP12
Course Name	Advanced Database Management Systems Practical
Periods per week (1 Period is 60 minutes)	4
Credits	2

List of Practicals:

1	a	Create a global conceptual schema Emp (Eno, Ename, Address, Email, Salary)
		and insert 10 records. Divide Emp into vertical fragments
		Emp1 (Eno, Ename, Address) and Emp2 (Eno, Email, Salary) on two different
		nodes. Fire the following queries:
		i. Find the salary of an Employee where employee number is known.
		ii. Find the Email where the employee name is known.
		iii. Find the employee name and Email where employee number is known.
		iv. Find the employee name whose salary is > 10000
	b	Create a global conceptual schema product_log(product_id, product_name,
		product_desc, cost, profit) and insert 10 records.
		Divide product_log into vertical fragments
		product_m4(product_id, product_name, product_desc) and
		product_m4(product_id, cost, profit) on two different nodes.
		Fire the following queries:
		i. Display cost and profit of each product
		ii. Display product name where profit is less than Rs.20
		iii. Display product name, details where cost is between 200 to 500
		iv. Display product name beginning with 'LA' and profit is 10% of product
		cost
2	a	Create a global conceptual schema Emp (Eno, Ename, Address, Email, Salary)
		and insert 10 records. Divide Emp into horizontal fragments using the condition
		that Emp1 contains tuples with salary < 10000 and Emp2 with 10000 < salary <
		20000 on two different nodes. Fire the following queries:
		i. Find the salary of all employees
		ii. Find the Email of all employees where salary=15000
		iii. Find the employee name and Email where employee number is known
		iv. Find the employee name and address where employee number is known
	b	Create a global conceptual schema cust_pdtls (cust_id, cust_name, cust_addr) and
		insert 10 records. Create two more schemas cust_bill(cust_id, cust_mobile,
		cust_billamt) and cust_totbill(cust_id, cust_totalamt) on two different nodes. Fire
		the following queries:
		i. List out the customer name operating more than 2 mobiles.
		ii. Display the customer name where the total bill is greater than 2000.
		iii. Display the total bill for all the customers.

		iv. Display the customer name who is with us for the last 4 months.
3	а	Create a global conceptual schema Emp(Eno;Ename;Address;Email;Salary)
		and insert 10 records. Store the replication of Emp into two different nodes and fire
		queries :
		i. Find the salary of all employees.
		ii. Find the email of all employees where salary $= 15000$.
		iii. Find the employee name and email where employee number is known.
		iv. Find the employee name and address where employee number is known.
4	а	Using Object Oriented databases create the following types:
		i. AddrType1 (Pincode: number, Street: char, City: char, State: char, No:
		number)
		ii. BranchType (address: AddrType1, phone1: integer, phone2: integer)
		iii. AuthorType (name: char, addr AddrType1)
		iv. PublisherType (name: char, addr: AddrType1, branches:
		BranchTableType)
		v. AuthorListType as varray, which is reference to AuthorType
		Next create the following tables:
		i. BranchTableType of BranchType
		ii. authors of AuthorType
		iii. books (title: varchar, year: date, published_by ref PublisherType, authors
		AuthorListType)
		iv. Publishers of PublisherType
		Insert 10 records into the above tables and fire the following queries:
		i. List all of the authors that have the same address as their publisher
		ii. List all the authors that have the same pin code as their publisher.
		iii. List all books that have 2 or more authors.
		iv. List the title of the book that has the most authors:
		v. List the name of the publisher that has the most branches.
		vi. Name of authors who have not published more than a book.
		vii. all the branches that belong to the publisher 'tata' to the publisher 'joshi'
		viii. List all the authors who have published more than one book.
		ix. List all books (title) where the same author appears more than once on the
		list of authors (assuming that an integrity constraint requiring that the
		name of an author is unique in a list of authors has not been specified).
5	а	Using Object Oriented databases, create the following types:
		i. state61(st_code: number, st_name: varchar2, st_district: varchar2,
		st_pincode: number)
		ii. contact_detail61(residence_no: number, office_no: number, email:
		varchar ² , fax: number, mobile: number)
		iii. address61(road no: varchar2, road name: varchar2, landmark:varchar.
		state: state61, contact: contact_detail61)

		 iv. staff61(staff_id: number, staff_name: varchar2, staff_address: address61, staff_deptno: number, staff_sal: number, staff_other: varchar2, dob: date) define method getAge() to calculate age using dob v. dept61(dept_id: number, location: varchar2, dept_name: varchar2,emp: staffTableType) Next create the following tables: i. staffTableType of staff61
		ii. dpt_refernce of dept61 with nested relation (emp)
		Insert records into the above tables and fire the following queries:
		 i. Display staff ID and department name of all employees. ii. How many workers are in particular department. iii. Find department name for particular staff name iv. Display department-wise report v. Display age and birth date of particular employee
6	a	Create a table Employee with attributes employee_id, first_name, last_name, email, hire_date, job_id, salary, resume as clob and picture as blob to insert an employee's picture. Fire the following queries. i. Use of substr and instr function. ii. Use of OUTPUT.PUT_LINE.
		 And also perform the following : i. For appending data into clob datatype. ii. Selecting CLOB Values by Using SQL iii. Removing LOBs
	b	 Create a table Emp with the attributes Eno as employee number, Ename as employee name, Eaddress as employee address and photo as employee picture. Also create a table Company with attributes Eno, designation, age. Fire the following queries : i. Find the name and designation of all the employees. ii. Find the name and age of all the employees. iii. Find the name and photo of a particular employee.
7	a	Create a table tbl Emp_Appnt, which stores the account number,name, and valid time say, recruitment data retirement date. Insert 10 records and fire the following queries i. Find all the employees who join the company on 2/3/2001 ii. Find all the employees who will retired on 2/3/2001
	b	Create a table tbl_shares, which stores the, name of company, number of shares, and price per share at transaction time. Insert 10 records and fire the following queries.
		i. Find all the names of a company whose share price is more than Rs.100 at 11:45 A.M.

		ii. Find the name of company which has highest shares price at 5.00 P.M.
8	a	<u>C</u> reate a table employee which stores the employee number,
		employee name, email, address and salary.
		Create a table log_employee which stores employee number, old salary,
		updated salary and date.
		Create the following triggers:
		1. On insert of an employee record in the employee table, the corresponding va
		ii On undate of any record in the employee table, the corresponding record mu
		the log employee table
		the tog_employee table.
		Insert 10 records and fire the following queries:
		i. Display the latest salary of all the employees.
		ii. Display employee name that has got more than 2 user events.
		iii. Display employee name that has got an increment of 5000 in one increment.
		iv. Display employee name and salary of all the employees at second increment
		v. Display employee name, total salary and total increment.
9	a	Create table emp (eno, ename, hrs, pno, super_no) and project (pname, pno, thrs,
		head_no) where thrs is the total hours and is the derived attribute. Its value is the
		sum of all employees working on that project. eno and pno are primary keys,
		head_no is foreign key to emp relation. Insert 10 tuples and write triggers to do
		the following:
		i Creating a trigger to insert new employee tuple and display the new total
		hours from project table
		ii Creating a trigger to change the hrs of existing employee and display the
		new total hours from project table.
		iii. Creating a trigger to change the project of an employee and display the
		new total hours from project table.
		iv. Creating a trigger to delete the project of an employee.
	b	Create table stud1 (roll_no,name) and stud2 (roll_no,name).
		Insert 10 tuples and write triggers to do the following:
		i. Create a trigger such that when a student record is inserted into the
		table stud1, the same record should be inserted into the table stud2.
	С	Create a table emp(dept_no,eno,ename,salary) and a table dept(dept_no,total_sal)
		where the employee table stores the list of employees belonging to which
		department and their respective salaries. The dept table shows the total salary
		given to all the employees belonging to the same department.
		insert to tuples and write triggers to do the following:
		i Create a trigger such that on insert of record in the emp table the salaries
		of employees belonging to the same department should get added in the
		dept table.

		ii. Create a trigger such that if a record is deleted from the emp table then the	
		salary of the respective employee belonging to a specific department	
		should get deducted from the dept table.	
10	a	Create a table employee having dept_id as number datatype and employee_spec as XML datatype(XM_Type). The employee_spec is a schema with attributes emp_id, name, email, acc_no, managerEmail, dataOf Joning. Insert 10 tuples into employee table. Fire the following queries on XML database.	
		i. Retrieve the names of employee	
		i. Retrieve the acc no of employees.	
		iii. Retrieve the names, acc no, email of employees.	
		iv. Update the 3^{rd} record from the table and display the name of an employee.	
		v. Delete 4 th record from the table.	
	b	Create a table candidate having cand_id as varchar2 datatype and biodata as XML	
		datatype (XML type). The biodata is a schema with attributes	
		Name, address, skill – compskill – 1) language 2) networking, expr – 1) prog	
		2) prjmgr, objectives. Fire the following queries on XML database	
		i. Display candidate name who is good in java and having experience more than 5 years	
		ii. Display candidate having project manager level experience	
		iii. Display name and skill of all candidates	
		iv. Delete record for address = borivali	
		v. Update experience of a particular candidate	

M. Sc (Data Science)	Semester – I – SIPSDSP13		
Course Name	Data Mining for Business Intelligence Practical		
Periods per week (1 Period is 60 minutes)	4		
Credits	2		

List of Practicals :

1	The dataset ToyotaCorolla.xls contains data on used cars on sale during the late summer of 2004 in The Netherlands. It has 1436 records containing details on 38 attributes, including Price, Age, Kilometers, HP, and other specifications.
	a. Explore the data using the data visualization (matrix plot) capabilities of XLMiner. Which of the pairs among the variables seem to be correlated?
	b. We plan to analyze the data using various data mining techniques described in future chapters. Prepare the data for use as follows:
	i. The dataset has two categorical attributes, Fuel Type and Metallic.(a) Describe how you would convert these to binary variables.(b) Confirm this using XLMiner's utility to transform categorical data into dummies.
2	The file ApplianceShipments.xls contains the series of quarterly shipments (in million \$) of U.S. household appliances between 1985 and 1989 (data courtesy of Ken Black).
	 a. Create a well-formatted time plot of the data using Excel. b. Does there appear to be a quarterly pattern? For a closer view of the patterns, zoom in to the range of 3500–5000 on the y axis. c. Create four separate lines for Q1, Q2, Q3, and Q4, using Excel. In each, plot a line graph. In Excel, order the data by Q1, Q2, Q3, Q4 (alphabetical sorting will work), and plot them as separate series on the line graph. Zoom in to the range of 3500–5000 on the y axis. Does there appear to be a difference between quarters? d. Using Excel, create a line graph of the series at a yearly aggregated level (i.e., the total shipments in each year). e. Re-create the above plots using an interactive visualization tool. Make sure to enter the quarter information in a format that is recognized by the software as a date. f. Compare the two processes of generating the line graphs in terms of the effort as well as the quality of the resulting plots. What are the advantages of each?
3	Sales of Toyota Corolla Cars. The file ToyotaCorolla.xls contains data on used cars (Toyota Corollas) on sale during late summer of 2004 in The Netherlands. It has 1436 records containing details on 38 attributes, including Price, Age, Kilometers, HP, and other specifications. The goal will be to predict the price of a used Toyota Corolla based on its specifications.
	a. Identify the categorical variables.

	b. Expla	in the relati	onship be	tween a c	ategorical	l variab	le and t	he serie	es of binary dummy
	variables derived from it.								
	c. How many dummy binary variables are required to capture the information in a								
	d Using	XI Miner's	wiui in ca data utili	ities conv	vert the co	ategoria	al varia	bles in	this dataset into
	dummy	binaries an	d explain	in words.	for one r	ecord	the valu	es in th	e derived binary
	dummie	s.	u enpium		101 0110 1		liic (uiu	05 111 11	e dell'ed elliury
	e. Use E	xcel's corre	elation cor	nmand (T	Tools > Da	ataAna	lysis > (Correlat	tion menu) to
	produce	a correlatio	n matrix a	and XLM	iner's ma	trix plo	t to obta	ain a ma	atrix of all
	scatterpl	ots. Comme	ent on the	relationsh	nips amor	ıg varia	bles. 17	The data	are available at
	http://lib	o.stat.cmu.eo	du/DASL/	Stories/H	HealthyBr	reakfast	.html.		
4	Predictin	ng Housing	Median P	rices. The	e file Bost	tonHou	sing.xls	contai	ns information on
	over 500) census trac	cts in Bost	ton, where	e for each	tract I	4 variat	bles are	recorded. The last
	column MEDV-	(CALMED 30 and 0 of	v) was de	Consider t	m MED v	, such	that it o	otains t	ne value 1 11 n value (MEDV) o
	a tract o	viven the inf	Cormation	in the first	at 13 colu	mns	cung un		
	a tract, <u></u>		ormation	in the me					
	Partition	the data in	to training	g (60%) ai	nd validat	tion (40))%) sets		
			c			,	,		
	a. Perfor	m a k-NN j	prediction	with all 1	13 predict	ors (ig	nore the	CAT.N	MEDV column),
	trying va	alues of k fr	om 1 to 5	. Make su	re to norr	nalize	the data	(click '	'normalize input
	data"). V	What is the b	best k chos	sen? Wha	t does it 1	mean?			
	b. Predic	ct the MED	V for a tra	ct with th	e followi	ng info	rmation	, using	the best k:
	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD
	0.2	0	7	0	0.538	6	62	47	4
	TAX	PTRATIO	В	LSTAT					
	307	21	360	10					
	*								
	(Copy th	nis table wit	h the colu	mn name	s to a new	works	sheet and	d then i	n "Score new data"
	choose "	from works	sheet.")						
	c. Why i	s the error of	of the train	ning data	zero?				
	d. Why i	is the valida	tion data	error over	ly optimi	stic coi	mpared	to the e	rror rate when
	applying	g this k-NN	predictor	to new da	ita?	.1	1 6		
	e. If the	purpose is t	o predict I		r several	thousai	nds of n	ew trac	ts, what would be
	the disac	ivantage of	using K-N	IN predict	tion? List	the op	erations	that the	e algorithm goes
		in andanta	and duran a	بناء مسمع ما م	4	1			0 0
5	Automo	in order to j	produce ea	ach predic	ction.	ntoing	informa	tion on	42.183 actual
5	Automo	in order to j bile Accide	produce ea nts. The fi	ach predic le Accide	ction. ents.xls co vited State	ontains	informa	tion on	42,183 actual
5	Automo automot	in order to j bile Accide bile accident	produce ea nts. The fi ts in 2001	ach predic le Accide in the Un (, or FAT	etion. ents.xls co nited State ALITY	ontains es that i	informa nvolved	tion on l one of	42,183 actual three levels of itional information
5	Automo automot injury: N is record	in order to bile Accident bile accident NO INJURY led, such as	produce ea nts. The fi ts in 2001 (, INJURY day of we	ach predic le Accide in the Un (, or FAT eek, weath	ction. ents.xls co ited State ALITY. I per condit	ontains es that i For eac	informa nvolved h accide nd road	tion on l one of ent, add type. A	42,183 actual three levels of itional information
5	Automo automot injury: N is record intereste	in order to p bile Accident bile accident NO INJURY led, such as id in develop	produce ea nts. The fi ts in 2001 7, INJURY day of we ping a sys	ach predic le Accide in the Un <i>I</i> , or FAT eek, weath tem for ou	etion. ents.xls co lited State ALITY. I ner condit uickly cla	ontains es that i For eac ions, au	informa nvolved h accide nd road g the se	tion on l one of ent, add type. A verity o	42,183 actual three levels of itional information firm might be f an accident based

	reporting). Our goal here is to predict whether an accident just reported will involve an injury (MAX_SEV_IR = 1 or 2) or will not (MAX_SEV_IR = 0). For this purpose, create a dummy variable called INJURY that takes the value "yes" if MAX_SEV_IR = 1 or 2, and otherwise "no."
	a. Using the information in this dataset, if an accident has just been reported and no further information is available, what should the prediction be? (INJURY = Yes or No?) Why?
	b. Select the first 12 records in the dataset and look only at the response (INJURY) and the two predictors WEATHER R and TRAE CON R
	i. Create a pivot table that examines INILIPY as a function of the 2 predictors for these 12
	records. Use all 3 variables in the pivot table as rows/columns, and use counts for the cells
	ii. Compute the exact Bayes conditional probabilities of an injury (INJURY = Yes) given the six possible combinations of the predictors.
	iii. Classify the 12 accidents using these probabilities and a cutoff of 0.5.
	iv. Compute manually the naive Bayes conditional probability of an injury given WEATHER $R = 1$ and TRAF CON $R = 1$.
	v. Run a naive Bayes classifier on the 12 records and 2 predictors using XLMiner. Check
	detailed report to obtain probabilities and classifications for all 12 records. Compare this
	to the exact Bayes classification. Are the resulting classifications equivalent? Is the
	ranking (= ordering) of observations equivalent?
	c. Let us now return to the entire dataset. Partition the data into training/validation sets
	(use XLMiner's "automatic" option for partitioning percentages).
	i. Assuming that no information or initial reports about the accident itself are available at
	the time of prediction (only location characteristics, weather conditions, etc.), which
	predictors can we include in the analysis? (Use the Data_Codes sheet.)
	ii. Run a naive Bayes classifier on the complete training set with the relevant predictors (and INJURY as the response). Note that all predictors are categorical. Show the
	classification matrix. iii. What is the overall error for the validation set?
	iv. What is the percent improvement relative to the naive rule (using the validation set)?
	v. Examine the conditional probabilities output. Why do we get a probability of zero for $P(INJURY = No SPD_LIM = 5)$?
6	Car Sales. Consider again the data on used cars (ToyotaCorolla.xls) with 1436 records
	and details on 38 attributes, including Price, Age, KM, HP, and other specifications. The
	goal is to predict the price of a used Toyota Corolla based on its specifications.
	a. Use XLMiner's neural network routine to fit a model using the XLMiner default values
	for the neural net parameters, except normalizing the data. Record the RMS error for the
	training data and the validation data. Repeat the process, changing the number of epochs
	(and only this) to 300, 3000, and 10,000.
	i. What happens to the RMS error for the training data as the number of epochs increases?
	ii. What happens to the RMS error for the validation data?
	iii. Comment on the appropriate number of epochs for the model.
	b. Conduct a similar experiment to assess the effect of changing the number of layers in
	the network as well as the gradient descent step size.

7	Online Statistics Courses. Consider the data in the file CourseTopics.xls. These data are
	for purchases of online statistics courses at statistics.com. Each row represents the courses
	attended by a single customer. The firm wishes to assess alternative sequencings and
	combinations of courses. Use association rules to analyze these data and interpret several
	of the resulting rules.
8	University Rankings. The dataset on American College and University Rankings
	(available from www.dataminingbook.com) contains information on 1302 American
	colleges and universities offering an undergraduate program. For each university there are
	17 measurements, including continuous measurements (such as tuition and graduation
	rate) and categorical measurements (such as location by state and whether it is a private or
	public school). Note that many records are missing some measurements. Our first goal is
	to estimate these missing values from "similar" records. This will be done by clustering
	the complete records and then finding the closest cluster for each of the partial records.
	The missing values will be imputed from the information in that cluster.
	a. Remove all records with missing measurements from the dataset (by creating a new
	worksheet).
	b. For all the continuous measurements, run hierarchical clustering using complete
	linkage and Euclidean distance. Make sure to normalize the measurements. Examine the
	dendrogram: How many clusters seem reasonable for describing these data?
	c. Compare the summary statistics for each cluster and describe each cluster in this
	context (e.g., "Universities with high tuition, low acceptance rate "). Hint: To obtain
	cluster statistics for hierarchical clustering, use Excel's Pivot Table on the Predicted
	Clusters sheet.
	d. Use the categorical measurements that were not used in the analysis (State and
	Private/Public) to characterize the different clusters. Is there any relationship between the
	clusters and the categorical information?
	e. Can you think of other external information that explains the contents of some or all of
	these clusters?
	f. Consider Tufts University, which is missing some information. Compute the Euclidean
	distance of this record from each of the clusters that you found above (using only the
	measurements that you have). Which cluster is it closest to? Impute the missing values for
	Tufts by taking the average of the cluster on those measurements.
9	Forecasting Wal-Mart Stock: show plots, summary statistics, and output from fitting an
	AR(1) model to the series of Wal-Mart daily closing prices between February 2001 and
	February 2002. (Thanks to Chris Albright for suggesting the use of these data, which are
	publicly available, e.g., at http://finance.yahoo.com and are in the file WalMartStock.xls.)
	Use all the information to answer the following questions.
1	Constructions alot of the difference descine
	a. Create a time plot of the differenced series.
	b. Which of the following is/are relevant for testing whether this stock is a random walk?
	• The autocorrelations of the close prices series • The $AD(1)$ close coefficient
1	• The AR(1) slope coefficient
	• The AK(1) constant coefficient
	c. Does the AK model indicate that this is a random walk? Explain now you reached your
1	I CONCIUSION.

	d. What are the implications of finding that a time series is a random walk? Choose the					
	correct statement(s) below.					
	• It is impossible to obtain useful forecasts of the series.					
	• The series is random.					
	• The changes in the series from one period to the other are random. FIGURE 16.19					
10	Souvenir Sales: The file SouvenirSales.xls contains monthly sales for a souvenir shop at a					
	beach resort town in Queensland, Australia, between 1995 and 2001. [Source: R. J.					
	Hyndman, Time Series Data Library, http://www.robjhyndman.com/TSDL; accessed on					
	December 20, 2009.] Back in 2001, the store wanted to use the data to forecast sales for					
	the next 12 months (year 2002). They hired an analyst to generate forecasts. The analyst					
	first partitioned the data into training and validation sets, with the validation set					
	containing the last 12 months of data (year 2001). She then fit a regression model to sales,					
	using the training set.					
	a. Create a well-formatted time plot of the data.					
	b. Change the scale on the x axis, or on the y axis, or on both to log scale in order to					
	achieve a linear relationship. Select the time plot that seems most linear.					
	c. Comparing the two time plots, what can be said about the type of trend in the data?					
	d. Why were the data partitioned? Partition the data into the training and validation set as					
	explained above.					

M. Sc (Data Science)	Semester – I – SIPSDSP14		
Course Name	Data Science – I Practical		
Periods per week (1 Period is 60 minutes)	4		
Credits	2		

List of Practical:

Using various online data Sets available in Kaggle like CaptaincyOne, ToyotaCorolla, airquality etc. perform the following (from Practical 3):

1	a. Reading data files using read.table(), read.csv(). Using readr package to read data files			
	using read_table(), read_csv()			
	b. Storing Data using dump() and dput()			
	c.Reading data using connection interfaces that is using File connections, URL			
	Connections, gzip connection and bzip Connection			
2	a. Create a subset of the following types of data : Matrix, List, Data Frames			
	b. Represent Date and Time in R and Perform operations on Dates and Times			
3.	Write for loops to:			
	a. Compute the mean of every column in mtcars.			
	b. Determine the type of each column in nycflights13::flights.			
	c. Compute the number of unique values in each column of iris.			
	d. Generate 10 random numbers from distributions with means of -10, 0, 10, and 100.			
4	Manage Data Frames with the dplyr package, use the following functions select(), filter(),			
	arrange(), rename(), mutate(), group_by()			
5	Apply built-in and user defined functions on any data set and understand argument			
	matching, lazy evaluation, the ••• argument, arguments coming after the argument			
6	Use the following functions on any data set : lapply(), split(), sapply(), apply(), tapply(),			
	mapply()			
7	Generate Random numbers using : rnorm, dnorm, pnorm, rpois and apply the functions			
	summary() and plot() on the generated data			
8	Use any data set to show the use of pipeable functions.			

SEMESTER – II

Advanced Statistical Methods

Learning Objectives:

The purpose of this course is to familiarize students with basics of Statistics, essential for prospective researchers and professionals.

Learning Outcomes:

- Enable learners to know descriptive statistical concepts
- Enable study of probability concept required for Data Science learners
- Enable learners to know different types statistical testing methods used in daily life.

M. Sc (Data Science)	Semester – II – SIPSDS21		
Course Name	Advanced Statistical Methods		
Periods per week (1 Period is 60 minutes)	4		
Credits (Theory + Internals)	4		

Unit Contents		No. of
		Lectures
Ι	Standard distributions: random variable; discrete, continuous, expectation and variance of a random variable, pmf, pdf, cdf, reliability, Introduction and properties without proof for following distributions; binomial, normal, chi-square, t, F. examples	12
II	Hypothesis testing: one sided, two sided hypothesis, critical region, p-value, tests based on t, Normal and F, confidence intervals. Analysis of variance : one-way, two-way analysis of variance	12
ш	Non-parametric tests: need of non-parametric tests, sign test, Wilicoxon's signed rank test, run test, Kruskal-Walis tests. Post-hoc analysis of one-way analysis of variance : Duncan's test Chi-square test of association	12
IV	Time Series Analysis and Forecasting Economic time series Different components, illustration, additive and multiplicative models, determination of trend, seasonal and cyclical fluctuations. Time-series as discrete parameter stochastic process, auto covariance and autocorrelation functions and their properties. Exploratory time Series analysis, tests for trend and seasonality, exponential and moving average smoothing.	12
v	Detailed study of the stationary processes: (1) moving average (MA), (2) auto regressive (AR), (3) ARMA and (4) AR integrated MA (ARIMA) models. Box-Jenkins models, choice of AR and MA periods. Discussion (without proof) of estimation of mean, auto covariance and autocorrelation functions under large sample theory, estimation of ARIMA model	12

parameters. Spectral analysis of weakly stationary process, periodogram	
stationary process, introduction to forecasting	

Sr.	Title	Author/s	Publisher	Edition	Year
No.					
1	Probability, Statistics, Design of	Trivedi, K.S.	Prentice	2 nd	2009
	Experiments and Queuing theory,		Hall of		
	with applications of		India, New		
	Computer Science		Delhi		
2	Fundamentals of Mathematical	Gupta, S.C. and	S. Chand	11 th	2002
	Statistics	Kapoor, V.K.	and Sons,		
			New Delhi		
3	Applied Statistics, S	Gupta, S.C. and	. Chand	7 th	2002
		Kapoor, V.K.	and Son's,		
			New Delhi		
4	Common statistical tests.	Kulkarni, M.B.,	Satyajeet	6 th	1999
		Ghatpande, S.B.	Prakashan,		
		and Gore, S.D.	Pune		

Machine Learning

Learning Objective:

- To introduce several fundamental concepts and methods for machine learning.
- To familiarize the students with some basic learning algorithms and techniques and their applications, as well as general questions related to analyzing and handling large data sets.

Learning Outcome:

The student will be able to:-

- Understand the implementation procedures for the machine learning algorithms.
- Design Java/Python programs for various Learning algorithms and apply appropriate data sets to the Machine Learning algorithms.
- Identify and apply Machine Learning algorithms to solve real world problems.

M. Sc (Data Science)	Semester – II – SIPSDS22	
Course Name	Machine Learning	
Periods per week (1 Period is 60 minutes)	4	
Credits (Theory + Internals)	4	

Unit	Contents	No. of Lectures
I	Introduction to Machine Learning : What is machine learning?, Types of learning, Applications of Machine Learning algorithms. Supervised Learning: Learning a Class from Examples, Vapnik-Chervonenkis (VC) Dimension, Probably Approximately Correct (PAC)	12
	Learning, Noise, Learning Multiple Classes, Regression, Model Selection and Generalization, Dimensions of a Supervised Machine Learning Algorithm	
II	Bayesian Decision Theory: Classification, Losses and Risks, Discriminant Functions, Utility Theory, Association Rules Parametric Methods: Maximum Likelihood Estimation, Evaluating an Estimator: Bias and Variance, The Bayes' Estimator, Parametric Classification, Regression Multivariate Methods: Multivariate Data, Parameter Estimation, Estimation of Missing Values, Multivariate Normal Distribution, Multivariate Classification	
ш	Dimensionality Reduction: Subset Selection, Principal Components Analysis, Factor Analysis, Multidimensional Scaling, Linear Discriminant Analysis, Isomap	12

	Clustering: Mixture Densities, k-Means Clustering, Expectation-					
	Maximization Algorithm, Hierarchical Clustering					
	Non-Parametric Methods: Nonparametric Density Estimation,					
	Generalization to Multivariate Data, Nonparametric Classification,					
	Condensed Nearest Neighbor					
	Decision Trees: Univariate Trees, Pruning, Rule Extraction from Trees,					
	Learning Rules from Data, Multivariate Trees					
	Linear Discrimination: Generalizing the Linear Model, Geometry of the					
IV	Linear Discriminant, Pairwise Separation, Parametric Discrimination,	12				
	Logistic Discrimination.					
	Bayesian Estimation: Estimating the Parameter of a Distribution, Bayesian	1				
	Estimation of the Parameters of a Function, Gaussian Processes	1				
	Hidden Markov Models: Discrete Markov Processes, Three Basic					
	Problems of HMMs, Evaluation Problem, Finding the State Sequence,					
	Learning Model Parameters					
	Graphical Models: Example of Graphical Models, d-Separation, Belief					
\mathbf{V}	Propagation, Undirected Graphs, Learning the Structure of a Graphical	12				
	Model					
	Reinforcement Learning: Elements of Reinforcement Learning, Model-					
	Based Learning , Temporal Difference Learning, Generalization, Partially					
	Observable States, Support Vector Machines	I				

Sr. No.	Title	Author/s	Publisher	Edition	Year
1	Introduction to Machine Learning	Ethem Alpaydın	The MIT Press Cambridge	Second Edition	2010
2	UNDERSTANDING MACHINE LEARNING : From Theory to Algorithms	Shai Shalev- Shwartz, Shai Ben- David	Cambridge University Press	First Edition	2014
3	A first course in Machine Learning	Simon Rogers and Girolami	CRC Press	Second Edition	2016
4	Machine Learning	Rudolph Russell			2018
5	Machine Learning: Algorithms and Applications	Mohssen Mohammed, Badruddin Khan, Eihab Bashier	CRC Press		2017
6	Machine Learning: An Applied Mathematics Introduction	Paul Wilmott			2019

Linear Algebra

Learning Objectives:

To offer the learner the relevant linear algebra concepts through Data science applications.

Learning Outcomes:

- Appreciate the relevance of linear algebra in the field of computer science.
- Understand the concepts through program implementation
- Instill a computational thinking while learning linear algebra and linear programming.
- Linear Programming (LP), also known as linear optimization is a mathematical programming technique to obtain the best result or outcome.

M. Sc (Data Science)	Semester – II – SIPSDS23
Course Name	Linear Algebra
Periods per week (1 Period is 60 minutes)	4
Credits (Theory + Internals)	4

Unit	Contents	No. of
		Lectures
I	Field : Introduction to complex numbers, numbers in Python, Abstracting over fields, Playing with GF(2), Vector Space: Vectors are functions, Vector addition, Scalar-vector multiplication, Combining vector addition and scalar multiplication, Dictionary-based representations of vectors, Dot-product, Solving a triangular system of linear equations. Linear combination, Span, The geometry of sets of vectors, Vector spaces, Linear systems, homogeneous and otherwise	12
Π	 Matrix: Matrices as vectors, Transpose, Matrix-vector and vector-matrix multiplication in terms of linear combinations, Matrix-vector multiplication in terms of dot-products Null space: General description, Computing sparse matrix-vector product, Linear functions, Matrix-matrix multiplication, Inner product and outer product, From function inverse to matrix inverse Basis: Coordinate systems, Two greedy algorithms for finding a set of generators, Minimum Spanning Forest and GF(2), Linear dependence, Basis, Unique representation, Change of basis, first look, Computational problems involving finding a basis 	12
III	Dimension: Dimension and rank, Direct sum, Dimension and linear functions, The annihilator Linear transformations : properties, matrix of a linear transformation, change of basis, range and kernel, rank and nullity, Rank, Nullity theorem	12

	Gaussian elimination : Echelon form, Gaussian elimination over GF(2),		
	Solving a matrix-vector equation using Gaussian elimination, Finding a		
	basis for the null space, Factoring integers,		
	Inner Product: The inner product for vectors over the reals, Orthogonality,		
TX7	Orthogonalization: Projection orthogonal to multiple vectors, Projecting	12	
1 V	orthogonal to mutually orthogonal vectors, Building an orthogonal set of	14	
	generators, Orthogonal complement		
	Eigenvector: Modeling discrete dynamic processes, Diagonalization of the		
	Fibonacci matrix, Eigenvalues and eigenvectors, Coordinate representation		
X7	in terms of eigenvectors, The Internet worm, Existence of eigenvalues,	10	
v	Markov chains, Modeling a web surfer: Page Rank.	14	
	Linear Algebra: Applications, vectorized code, image recognition,		
	dimensionality reduction.		

Sr. No.	Title	Author/s	Publisher	Edition	Year
1	Coding the Matrix Linear Algebra through Applications to Computer Science	PHILIP N. KLEIN	Newtonian Press	1	2013
2	Linear Algebra and Its Applications	Gilbert Strang	Cengage Learning	4 th	2007
3	Linear Algebra and Its Applications	David C Lay	Pearson Education India	3 rd	2002
4	Linear Algebra and Probability for Computer Science Applications	Ernest Davis, A K Peters	A K Peters	1	2012
5	Operation research	SD Sharama	Kedarnath	2017	2012

Research Methodology

Learning Objective:

To develop the aptitude for research and the ability to explore research techniques to solve real world problems

Learning Outcome:

- The learner will be able to critically analyze, synthesize and solve complex unstructured business and real world problems with scientific approach.
- The learner will develop analytical skills by applying scientific methods.

M. Sc (Data Science)	Semester – II – SIPSDS24	
Course Name	Research Methodology	
Periods per week (1 Period is 60 minutes)	4	
Credits (Theory + Internals)	4	

Unit	Contents	No. of	
		Lectures	
Ι	Research approaches, Research methods versus methodology, Research Process. Formulation of the research problem: Selecting the problem, Technique involved in defining a problem.		
II	Research Design: Meaning, Need and Features of a research design, Different research designs, Basic principles of Experimental Designs, Sampling Design: Implications and Steps in Sampling Design, Types of Sampling Designs.		
III	Data Collection Methods: Primary data and Secondary data, Processing and Analysis of Data, Statistics in research, Sampling theory, Concept of Standard Error, Estimation, Sample size and its determination Testing of hypotheses : Procedure and flow diagram for hypothesis testing, Parametric Tests, Chi-Square Test, Analysis of Variance and Covariance, Non-parametric tests	12	
IV	Multivariate analysis techniques: Classification, Variables, Factor Analysis, Path Analysis, Interpretation and Report Writing :Technique and Precaution in interpretation, Report Writing,Use of tools / techniques for Research: methods to search required information effectively, Reference Management Software like Zotero/Mendeley, Software for paper formatting like LaTeX/MS Office, Referencing styles		

v		Ethical Issues in Research , Plagiarism and Self Plagairism, Avoiding plagiarism, Why cite?, Basics of citation Fundamentals of Patents : What is a patent? Conditions for grant of patent. Inventions that are not	
	V	Patentable, Process and Product Patent, Procedure of the process of registration and grant of patents, Transfer and Infringement of Patent	12
		Rights, Surrender of Patents, Challenges in Patents	

Sr. No.	Title	Author/s	Publisher	Edition	Year
1	Research Methodology – Methods and Techniques	C.R.Kothari, Gaurav Garg	New Age	4e	
2	Research Methodology – a step by step guide for beginners	Ranjit Kumar	Sage Publications	3e	2011
3	Research Methodology	Panneerselvam	PHI Learning	2e	2014
4	Business Research Methods	William G.Zikmund, B.J Babin, J.C. Carr, Atanu Adhikari, M.Griffin	Cengage	8e	2016
5	Business Research Methods	Alan Bryman and Emma Bell	Oxford University Press	3e	2011
6	Intellectual Property Rights	Neeraj Pandey,Khushdeep Dharni	PHI Learning		2014
7	The complete guide to referencing and avoiding plagiarism	Colin Neville	Open University Press	2e	2010
8	Cite Right	Charles Lipson	The University of Chicago Press		2006

Practical Component: (SEMESTER II)

M. Sc (Data Science)	Semester – II – SIPSDSP21
Course Name	Advanced Statistical Methods Practical
Periods per week (1 Period is 60 minutes)	4
Credits	2

List of Practical:

- 1. Problems based on binomial distribution
- 2. Problems based on normal distribution
- 3. Property plotting of binomial distribution
- 4. Property plotting of normal distribution
- 5. Plotting pdf, cdf, pmf, for discrete and continuous distribution
- 6. t test, normal test, F test
- 7. Analysis of Variance
- 8. Non parametric tests- I,II
- 9. Kruskal-Walis tests
- 10. Wilcoxon's signed rank test
- 11. Time Series Analysis and Forecasting.
- 12. Box- Jenkins methodology.
- 13. Problems based Periodogram and Correlogram

M. Sc (Data Science)	Semester – II – SIPSDSP22
Course Name	Machine Learning Practical
Periods per week (1 Period is 60 minutes)	4
Credits	2

List of Practical:

Implement the following in Java/python using pre-defined data sets.

1	Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples.
2	Implement and demonstrate the Candidate-Elimination algorithm
3	Write a program to demonstrate the working of the decision tree based ID3 algorithm.
4	Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.
5	Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task.
6	Write a program to construct a Bayesian network considering medical data.
7	Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for clustering using k-Means algorithm.
8	Write a program to implement k-Nearest Neighbour algorithm.

M. Sc (Data Science)	Semester – II – SIPSDSP23
Course Name	Linear Algebra Practical
Periods per week (1 Period is 60 minutes)	4
Credits	2

List of Practical: Implement using R/Python Programming.

- 1. Write a program which demonstrates the following:
 - a. Addition of two complex numbers
 - b. Displaying the conjugate of a complex number
 - c. Plotting a set of complex numbers
 - d. Creating a new plot by rotating the given number by a degree 90, 180, 270 degrees and also by scaling by a number a=1/2, a=1/3, a=2 etc.
- 2. Write a program to do the following:
 - a. Enter two distinct faces as vectors u and v.
 - b. Find a new face as a linear combination of u and v i.e. au+bv for a and b in R.
 - c. Find the average face of the original faces.
- 3. Write a program to do the following:
 - a. Enter a vector u as a n-list
 - b. Enter another vector v as a n-list
 - c. Find the vector au+bv for different values of a and b
 - d. Find the dot product of u and v
- 4. Write a program to do the following:
 - a. Enter an r by c matrix M (r and c being positive integers)
 - b. Display M in matrix format
 - c. Display the rows and columns of the matrix M
 - d. Find the scalar multiplication of M for a given scalar.
 - e. Find the transpose of the matrix M.
- 5. Write a program to do the following:
 - a. Find the vector –matrix multiplication of a r by c matrix M with an c-vector u.
 - b. Find the matrix-matrix product of M with a c by p matrix N.
- 6. Write a program to enter a matrix and check if it is invertible. If the inverse exists, find the inverse.
- 7. Write a program to convert a matrix into its row echelon form
- 8. Write a program to find Eigen values and vectors
- 9. Write a program to implement gaussion elimination method.
- 10.Write a program to implement concepts of orthogonalization.

M. Sc (Data Science)	Semester – II – SIPSDSP24
Course Name	Research Methodology
Periods per week (1 Period is 60 minutes)	4
Credits	2

List of Practical: (Using Google scholar/SPSS/Mendeley/End note etc)

1	Defining a research problem
2	Literature Review using search tools like google scholar
-	
3	Research design
5	
4	Sampling Design
-	Samping Design
5	Use a of measurement and seeling techniques
5	Usage of measurement and scaling techniques
	m 1 477 1 1
6	Testing of Hypothesis
7	Implement data analysis techniques
8	Writing a research report
U	whiting a research report